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INTRODUCTION

In an investigation of active magnetic detection, a basic issue is the decoupling of the
source field from the detector. One concept for accomplishing this is a search coil gradiometer.
The source coil is wrapped around the center of a permeable core, and two detection coils are
wrapped around the core, one near each end, and connected in series opposition. The detection
coils and/or the source coil can be made movable along the axis of the core, in order to achieve
optimum nulling of the source-detector coupling. In addition to this, the device can be used in a
discriminator configuration, in which the source frequency is rejected in the detector by means of
a feedback circuit with some time constant appropriate to the application. Of course, this mode
of operation requires relative motion between the detector and the scattering object, but in many
applications this is acceptable.

At practical distances from a scattering object, the scattered field can be approximated by a
linear combination of a uniform field and a uniform gradient. The uniform gradient is the
quantity to be measured by the search coil gradiometer. It is well known that the presence of a
permeable core will cause magnetic flux concentration, and will enhance the measurement of the
magnetic field. The question to be addressed here is: what does the permeable core do to the
field gradient?

THE MODEL

To investigate the effects of a permeable core, the core will be approximated by a
permeable prolate spheroid. The spheroid is oriented with its symmetry axis along the z-axis,
and a uniform field plus a uniform gradient field is applied. The magnetic potential for the
external field is then given by

H, I, X, G 2 2)

'=-H~x-HyHy z- (x 2 -z )-- Y(y -z )-G,2xy-G xz-G 3 yz+C (1)

where C is an arbitrary constant. The form given here produces a unform gradient tensor which
is symmetric and traceless, consistent with the requirements V • H = 0 and V x H = 0.

To solve the boundary value problem, it is necessary to change to prolate spheroidal
coordinates ( , l, 0) where 4(l _< 4 < oo) labels a family of confocal prolate spheroids,
rl(-1 < 1i < 1) labels an orthogonal family of confocal hyperboids, and 0(0:5 4 _ 2n) labels
angular position about the symmetry axis.' With the foci located at ±a on the z-axis, the
connection between the coordinate systems is as follows

r 2 (2)

"E2a

1 "Static and Dynamic Electricity", by William R. Smythe, Third E& ilon, McGraw-fhll, 1968
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r I - r2 (3
2a

and

f an-'(x, y). (4)

where

r1 = x2 +y 2 +(z+a)2  (5)

and

r2 = x2 +y2+(z-a) 2 . (6)

The inverse relationships are

x = a - )(I-2) Cosb (7)

y =a (t2 - 1)(I-n 2)sin, (8)

and

z = a T. (9)

The general solution to Laplace's equation in prolate spheroidal coordinates is'

= X [A. cos mO + B,.m sin mo] [Ci.P;"(l) + D,.,Q7'(4)] [E,.mP7'(i) + F,,.m(mj)] (10)
I=Om=O

where P' and Q" are the associated Legendre functions of the first and second kind,
respectively. Note that Q(4) is regular for 4 -4 - while Pr(4) is regular for - 1. The first
few functions have the explicit forms

pO( ) =. I (11)

PO(4)= (12)

2
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P() = _1 (13)

p2(4) ( 1) (14)

P'(4) = 3 ' 2 ) (15)

P = 3(42- 1) (16)

Qo°(4) = In( (17
-- i'](17)

o 1 2_ (+1~3

Q4() 1 4ln( -1 1 (18)
=1 +

QI" lnt --- L _ 1 (19)

and

Q 2 0() = ( 32 _ 1)1() 1 (

• m --i  ()2 1)2 (2

To put the external applied potential into prolate spheroidal coordinates it is necessary to
use (Eq. 7-9), using (Eq. 11-16) for guidance. This gives

x = aP3()P(I) cos3 (23)

y = aP( )P(r) sin5 (24)

z =aP()P(i) (25)

2
xz = a p'( )p'(,) s 0 (24)

9
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2
yz = P2 (4)P2 (ij) sin 0 (27)

and

a P2(4)P2(i") sin 2 (28)

for the obvious cases. To handle the terms involving squares of the coordinate values it is more
convienient to use linear combinations. First

2

(x2 -z 2)-(y 2 -z 2 ) = 2 2 cos 20. (29)

The other combination is

(x2_z 2)+(y 2_z 2)=x 2 +y 2 - 2z 2  (30)

=a2( 2 - 1)(1-12) - 2a2 2Tl2

a 2  
2  

2a 2
=- (3 - 11(3TI -I)- -

3 ~ IX I 3

-a AT o0 +,12 P2 ()2 ()+C

The additive constant in (Eq. 30) can be absorbed into the constant in (Eq. 1), so it can be
dropped without loss of generality. With the results given in (Eq. 29-30), the following
expressions result

2 
2  a 2

x 2 z (= )P2 (11) cos 2 -a P2)P(T1) (31)

and

2 2

-2-' p2 (t)p2 () cos 20 - (32)-- 2" 2 2 ( ) 2 ( )

The external potential can now be expressed in prolate spheroidal coordinates as

4
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L=2m=l

" = [A,', cosmo +B',, sinm]P1n(t)P,(ri) (33)
I=lm=0

where

BI' 0 =B2,0 =0 (34)

Alo=-aH3, A2= a"G" +G ) (35)

Ae. =-aH,* , B , =-aH2' (36)

a 2 a2A,,, =- G13 , B2 9 = - 23 ( 7

a '3 - , B'2 -G' (38)

The total external potential has the form

(D = V + 00 (39)

where the spheroid-induced part V) has the form

1=2m=l
Do = [A cos mo +B m sin mO]Q7"(4)Pj'(7). (40)

l=lm=O

The interior potential & is given by

1=2m=l

B=, Acosm4+B, sin m]P7'(4)P7'(7). (41)

The coefficients are determined by applying the boundary conditions of continuity of the
tangential H field and normal B field at the surface of the spheroid where = . The H field is
given by H =-V4), and in prolate spheroidal coordinates, this gives

5
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H4 h(42)

Hn=- h2(42)
h2

and

H*=- 1 sin -(- (43)

where the scale functions are

h 'n2 (44)

/h =  17 _,2 (45)

and

1h ({2_1)(I-T2)"(6

The boundary conditions are

H+ Hn H 1=4 (47)

and

H4' + HO =Wj 't4 = (48)

where x = t /to.

Upon application of (Eq. 47) after deleting common factors and using orthogonality of the
trigonometric functions, there results

6
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A1.,,a,( ) -A,P7 ( ) =-AleP () (49)

and
BO m- i -Bma ..)-.j

-, B,,P7'() 1 -B.,,P'( ). (50)

The remaining equations are obtained from (Eq. 48), using orthogonality of the trigonometric
functions:

A,'. Q( ) - TAI,,mPt ( ) = -Ale,mP7 (C) (51)

and

.0','m (4)- tB,.P,(m) •B,,P,,( ). (52)

Define the determinant of coefficients DI, and the Wronskian Wi~m, respectively, as

DI, = P )n ) - PI ()Q7() (53)

and

W,.,, PIM()IMC4) - PIC)Q?( ). (54)

Then the solutions for the coefficients are given by
AO - 1)PIM( )'P m( ) A,'

Dim DI, (55)

BO t 1)PIMC)P'I;'4) Be

BI'm DI, (56)

A'= W. Al, (57)

and

D IB,,. (58)

7
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AXIAL FIELD AND GRADIENT AT THE
CENTER OF THE SPHEROID

The performance of the permeable spheroid as a magnetic sensor core is determined by the
combined effects of the permeability and the demagnetizing effect of the body. These can be
examined, for both the field and gradient, by evaluating the two expressions at the origin. Since
the expansion for 0' is identical in form to that for V', (Eq. 41) can be written in terms of
cartesian coordinates with the aid of (Eq. 23-30) used in reverse. This gives

Ai  B.1 + .oz 9A B ,1  18B22
-i=A,,x +--',-y+ -z+--xz + -1- (59)

a a a a2  a2 a2

12A2,0 (x2 + y2 2z ) 9A2,2 (X 2y2).

Then

H' (60)

and

G 2 i (61)

Thus, the axial field is

H Al',0 9A2,, 9B2, 48A,o (

a a 2 a2 a2

and the axial gradient is

G'3 - 48A,o (63)

Applying (Eq. 35) and (Eq. 57), the ratio of the interior axial flux density at the origin to
the applied flux density is given by

8
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B'(O,O,O) WI,3 " '-0 =f'r (64)
B3' Dj,o

and the ratio of the axial induction gradients everywhere in the interior is given by

gtG33 W2,0
- "= g't. (65)

goG 33 D2,0

The Wronskian W,,,(4) has the explicit form

(- -)m+4m - 2-7--iW ( -+) = 2 (66)

which, for m = 0 reduces to

= - " (67)

With these results, the quantities f and g are given by

1

and

4 + 3(rt- 1)4(32-1) ln-F_ -6 l(9

If D and L are the spheroid diameter and length, respectively, then, with = D IL,
= 1/r -. The functions f and g are plotted in Figure 1., for a value of T = 100. It is clear

from these curves that demagnetization is more significant for the gradient than for the field, and
an LID of 27 is required to get 50% of the benefit of the higher permeability.

9
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